Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats.
نویسندگان
چکیده
The periaqueductal gray (PAG) and amygdala are known to be important for defensive responses, and many contemporary fear-conditioning models present the PAG as downstream of the amygdala, directing the appropriate behavior (i.e., freezing or fleeing). However, empirical studies of this circuitry are inconsistent and warrant further examination. Hence, the present study investigated the functional relationship between the PAG and amygdala in two different settings, fear conditioning and naturalistic foraging, in rats. In fear conditioning, electrical stimulation of the dorsal PAG (dPAG) produced unconditional responses (URs) composed of brief activity bursts followed by freezing and 22-kHz ultrasonic vocalization. In contrast, stimulation of ventral PAG and the basolateral amygdalar complex (BLA) evoked freezing and/or ultrasonic vocalization. Whereas dPAG stimulation served as an effective unconditional stimulus for fear conditioning to tone and context conditional stimuli, neither ventral PAG nor BLA stimulation supported fear conditioning. The conditioning effect of dPAG, however, was abolished by inactivation of the BLA. In a foraging task, dPAG and BLA stimulation evoked only fleeing toward the nest. Amygdalar lesion/inactivation blocked the UR of dPAG stimulation, but dPAG lesions did not block the UR of BLA stimulation. Furthermore, in vivo recordings demonstrated that electrical priming of the dPAG can modulate plasticity of subiculum-BLA synapses, providing additional evidence that the amygdala is downstream of the dPAG. These results suggest that the dPAG conveys unconditional stimulus information to the BLA, which directs both innate and learned fear responses, and that brain stimulation-evoked behaviors are modulated by context.
منابع مشابه
Neural Correlates of Fear in the Periaqueductal Gray
The dorsal and ventral periaqueductal gray (dPAG and vPAG, respectively) are embedded in distinct survival networks that coordinate, respectively, innate and conditioned fear-evoked freezing. However, the information encoded by the PAG during these survival behaviors is poorly understood. Recordings in the dPAG and vPAG in rats revealed differences in neuronal activity associated with the two b...
متن کاملFos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds.
Electrical stimulation of the dorsal regions of the periaqueductal gray (PAG) leads to defensive reactions characterized as freezing and escape responses. Until recently it was thought that this freezing behavior could be due to the recruitment of neural circuits in the ventrolateral periaqueductal gray (vlPAG), while escape would be mediated by other pathways. Nowadays, this view has been chan...
متن کاملTowards a translational model of panic attack
About 20 years ago, Deakin and Graeff proposed that whereas generalized anxiety disorder is produced by the overactivity of 5-HT excitatory projections from dorsal raphe nucleus to the areas of prefrontal cortex and amygdala which process distal threat, panic attacks are a dysfunction of 5-HT inhibitory projections from dorsal raphe nucleus to the dorsal periaqueductal gray matter, thereby rele...
متن کاملRole of amygdala in conditioned and unconditioned fear generated in the periaqueductal gray.
The amygdala and ventral portion of the periaqueductal gray (vPAG) are crucial for the expression of the contextual freezing behavior. However, it is still unclear whether the amygdala also plays a role in defensive behaviors induced by electrical stimulation of the dorsal periaqueductal gray (dPAG). In the present study, rats were implanted with electrodes into dPAG for determination of the th...
متن کاملDorsal periaqueductal gray post-stimulation freezing is counteracted by neurokinin-1 receptor antagonism in the central nucleus of the amygdala in rats
Electrical stimulation of the dorsal periaqueductal gray (dPAG) in rats generates defensive responses that are characterized by freezing and escape behaviors, followed by post-stimulation freezing that resembles symptoms of panic attacks. dPAG post-stimulation freezing involves the processing of ascending aversive information to prosencephalic centers, including the amygdala, which allows the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 36 شماره
صفحات -
تاریخ انتشار 2013